

INNOVATIVE ALGAE BASED SOLUTIONS

Danièle MARZIN Marketing & Innovation Director Olmix Group

Agenda

- I. OLMIX Vision
- II. ALGAE Introduction
- III. MACROALGAE Innovative molecules
- IV. MACROALGAE in Brittany
- V. OLMIX ALGAE processing technology
- VI. Nutrition and health algae based solutions

Agenda

- I. OLMIX Vision
- II. ALGAE Introduction
- III. MACROALGAE Innovative molecules
- IV. MACROALGAE in Brittany
- V. OLMIX ALGAE processing technology

VI. Nutrition and health algae based solutions

OLMIX Vision

The challenge for modern agriculture :

The world must produce BETTER and MORE with LESS

- to sustainably feed the planet
- to feed humans in a healthier way

A HEALTHY FOOD CHAIN THANKS TO ALGAE

Less pesticides

 Less antibiotics

• Less chemicals

Agenda

I. OLMIX Vision

II. ALGAE - Introduction

- III. MACROALGAE Innovative molecules
- IV. MACROALGAE in Brittany
- V. OLMIX ALGAE processing technology

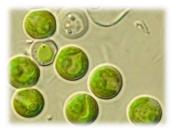
VI. Nutrition and health algae based solutions

Why algae?

Algae, a natural & renewable resource

- 100% natural
- Traditional use
- Low risk for toxicity or ecotoxicity

- Growth rates of up to 30% per day !
- Algae are not dependent on arable land or fresh water
- Algae produce 70% of earth's oxygen
- Algae play a vital role in reducing CO₂
- Huge application potential for plants, animals & humans with Still a lot to discover !



Algae & Seaweed - Definitions Algae

- Living organisms with chlorophyll having oxygenic photosynthesis
- Their life cycle is generally realised in aquatic or humid environments (fresh or salt water)
- Do not have roots, flowers or seeds
- Sizes between 0,5 µm 70 m
- A polyphyletic group including both procaryotic and eucaryotic organisms
 - Procaryotes (no nucleus) (*ie : cyanobacteria blue green algae*)
 - Eucaryotes (with a nucleus)
 - Microalgae : unicellular : ex Chlorella
 - Macroalgae : multicellular : ex Ulva

Spirulina sp.

Chlorella vulgaris

Ulva sp.

Algae & Seaweed - Definitions

Seaweed (marine macroalgae)

Used to describe algae that are :

- Macroscopic
- Eucaryote
- Multicellular
- Marine

Divided in three groups:

- Green
- Red
- Brown

Red

Brown

OLMIX group is specialized in Marine macroalgae

Green seaweed

Polysaccharides: Ulvans Colour due to: Chlorophyll a and b

Ancestors of terrestrial plants (1 200 million years) ~1500 species

Ulva

intestinalis

Codium

Caulerpa

Health & Nutrition Poultry Seminar - Dubai - 19th January 2018

Cladophora

Red seaweed

- Polysaccharides: Carrageenans and Agar
 - Colour due to: Phycoerythrin and Phycocyanin (Accesory pigments to chlorophyll a

Chondrus

Dilsea

Brown seaweed

Fucus

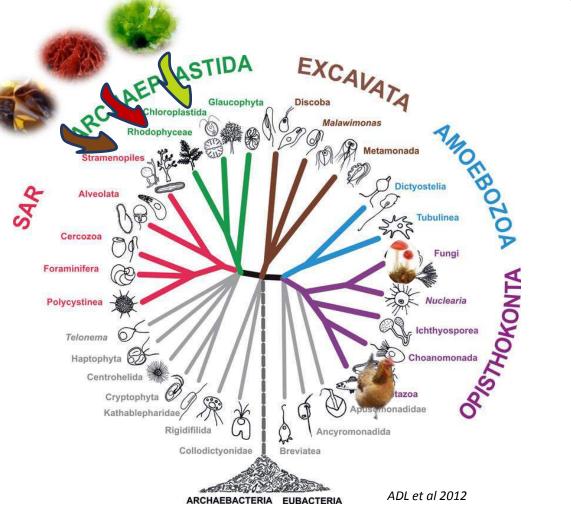
Bifurcaria

Polysaccharides: Alginates, Fucoidans and Laminarins Colour due to: Fucoxanthin (Accesory pigments to chlorophyll c)



Ascophyllum

Laminaria



5.

Seaweeds : large phylogenetic differences between groups

- Same origin
- But green, red and brown algae are as different as fungi and animals !
- → Sources of very variable compounds !

Main macroalgae components

- Carbohydrates (20-70% of dry weight) Poly-anionic and sulfated polysaccharides
 - > Alginates, fucoidans (Brown algae)
 - > Carraghenans and agars (Red algae)
 - Ulvans (Green algae)
 - Insoluble carbohydrates
- **Proteins** (1-35% of dry weight)
- Lipids (0,5-4% of dry weight)
- Minerals (10-30% of dry weight)
 - Iron, Iodine, Copper, Potassium, Sodium, Calcium,
 Sulfate, Magnesium, Phosphorous, Chlorine, Manganese
 - > Numerous trace-elements.
 - Pigments
 - > Phycobiliproteins (Red algae)
 - Carotenoids
- Vitamins
 - > A, B1, B2, B6, B12, C, D3, E, K
- Secondary metabolites
 - Polyphenols, phlorotannins
 - ➤ Steroids
 - ≻ ...

Health & Nutrition Poultry Seminar - Dubai - 19th January 2018

Biological

activities

Nutritional

b

ctivitie

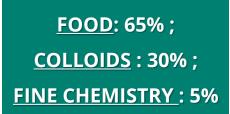
Ŵ

Macroalgae - Current uses

<u>Human food</u>

- As a vegetable or condiment, mainly in Asia : Nori, Wakame, seaweed salads
- **Texturizing agents** (gelling agent polysaccharides properties)
 - E400 E401 Alginate
 - E 406 Agar
 - E407 Carrageenan
 - E407a Semi-refined Eucheuma
- Nutritional supplement: proteins, minerals and vitamins
- **Functional food**

Agricultural uses


- Flour or meal
- Fertiliser and soil amendment

<u>Industry</u>

 Phycocolloids used as thickening, gelling or stabilizing agents, especially in the textile industry

Fine Chemistry

• Cosmetics: texturizing or active agents,

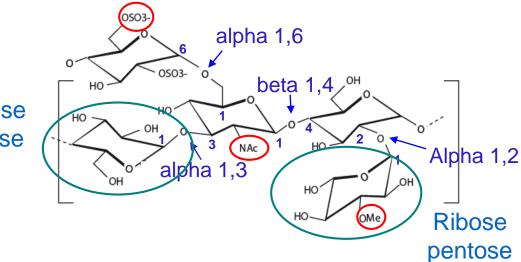
Agenda

- I. OLMIX Vision
- II. ALGAE Introduction
- III. MACROALGAE Innovative molecules
- IV. MACROALGAE in Brittany
- V. OLMIX ALGAE processing technology

VI. Nutrition and health algae based solutions

Polysaccharides: introduction

The most abundant renewable materials found on land and in the ocean

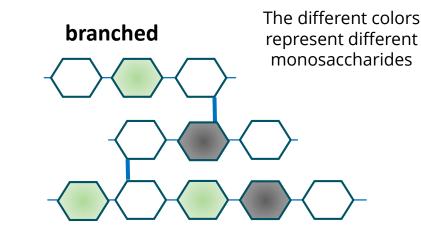


Polysaccharides: High molecular weight polymers of sugars available in a variety of structures

Variable structure depending on:

- Sugar
- Glycosidic linkage
- Functional groups

Glucose hexose

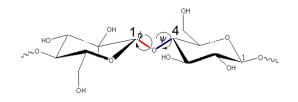


Polysaccharides: High potential of variable structures

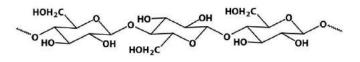
Homo-polysaccharides unbranched

branched

Hetero-polysaccharides unbranched



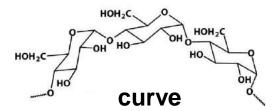
One hexasaccharide →10¹² combinations (Laine, 1994)



Polysaccharides: Change of linkage in a regular chain change properties

Ex. of amylose, cellulose:

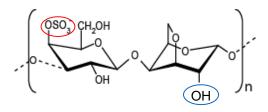
Cellulose (β 1,4-glucan)



Linear

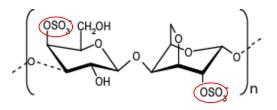
Sheet → fibrous

Amylose (α 1,4-glucan)


 $\mathsf{Helix} \rightarrow \mathsf{gel}$

Polysaccharides:

Increase of substitution change properties


Ex. of carrageenans

Kappa-carrageenan

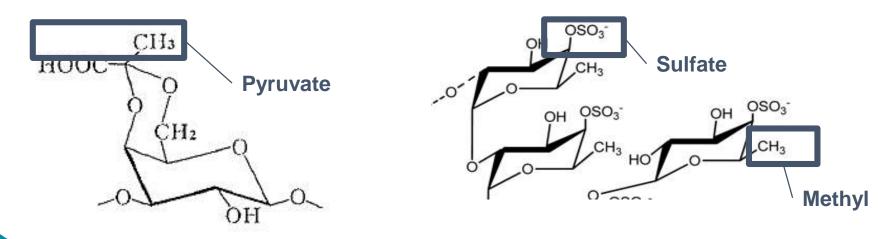
 $\mathsf{Helix} \to \mathsf{solid} \ \mathsf{gel}$

lota-carrageenan

 $\mathsf{Helix} \to \mathsf{soft} \ \mathsf{gel}$

Polysaccharides:

Change in functional groups change of biological activity


• Pyruvate: – CH₃-CO-COO⁻

Examples:

Methyl: - CH₃
Sulfate: - SO₃⁻

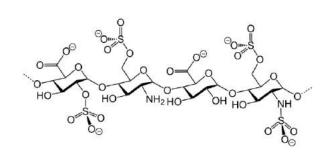
Pyruvate residues in λ Carrageenan

Permethylated and Sulfated Fucoidan

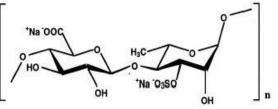
S Hirase et al, 1972 ; E McCandless, 1979 ; Q Zhang et al, 2005

Macroalgae cell walls polysaccharides specificities

	Terrestrial plants	Green algae	Red algae	Brown algae				
	Neutral polysaccharides							
Structure	Cellulose	Cellulose	Cellulose	Cellulose				
Energy	Starch	Starch	Floridean starch	Laminarin				
Matrix	Polyanionic polysaccharides							
Carboxylated (COOH)	-Pectic acid -Pectins			Alginic acid				
Sulfated (SO ₃ -)	X		Agars Carrageenanes	Fucoïdans				
Carboxy-sulfated	X	Ulvans						


No sulfated polysaccharides in terrestrial plants / microalgae / yeast → Unique to marine algae

Comparing biological activities with Animal sulfated polysaccharides


HEPARIN

- Anti-inflammatory
- Immunomodulation
- Antitumoral
- Anticoagulant and antitrombotic

ALGAL SULFATED POLYSACCHARIDES

- Anti-inflammatory (Kim et al. 2009; Hong et al. 2011)
- Immunomodulation (Kim et al. 2012; Berri et al. 2013)
- Mucin production stimulation (Barcelo et al. 2000)
- Antioxidant (Baky et al. 2009; Zhang et al. 2010; Souza et al. 2006)
- Antilipidemic (Hassan et al. 2011)
- Antiviral (Wang et al.2012)
- Antitumoral (Veeraperumal et al. 2012; Baky et al. 2009)
- Anticoagulant and antitrombotic

Polysaccharides – Biological activities Algal cell wall polysaccharides **ulvan**, **fucoidans & carraghenans**: different compositions but similar biological activities

- 3D structure (branching)
- High variety of sugars

heparin)

- Rare sugars (rhamnose)
 - Sulfate content -Phylogenetic analogy with animal glycosaminoglycanes (ex :

- Anticoagulant & antithrombotic
- Anti-infectious
- Immune-modulating
- Antioxidant
- Lipid metabolism
- Wound healing

•

Marine algal Polysaccharides Structure function relationship

	Antiviral activity	Immuno- modulation	Complement inhibition	Antioxidant activity	Metal chelating Free & hydroxy radicals scavenging	Anticoagulant properties
High Sulfate content						
Desulfatation						
High Sulfate/fucose ratio						
High Molecular weight						>
Low Molecular weight						7
Position of sulfate groups						
High ramification						
		= increased activ	rity	= reduced acti	vity	

Seaweeds - Future uses

Based on knowledge on bioactive components

<u>Plant health</u>

- Elicitor effect on bacterial and fungal pathogens
- Biostimulant effects : Improvement of nutrient uptake
- Regulation of soil life

→ Reduction of pesticide use

Animal health

- Immunomodulating agent
- Anti-infectious agent
- Regulator of the intestinal flora
- Gut protection effect
- → Reduction of antibiotic use

<u>Human health</u>

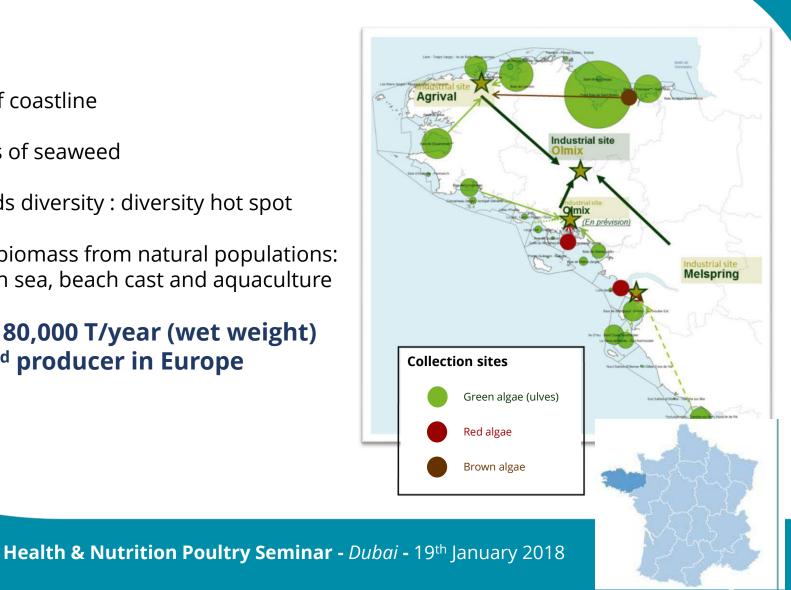
- Antiviral properties
- Immuno-regulation properties
- Anti-tumor properties (cancer)
- Reduction of central nervous system disorders
- → Reduction of chemical products use

Extraction: key to reveal the full potential !

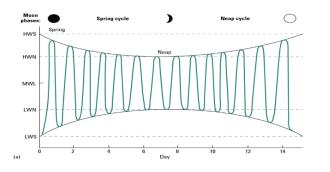
Agenda

- I. OLMIX Vision
- II. ALGAE Introduction
- III. MACROALGAE Innovative molecules
- IV. MACROALGAE in Brittany
- V. OLMIX ALGAE processing technology

VI. Nutrition and health algae based solutions



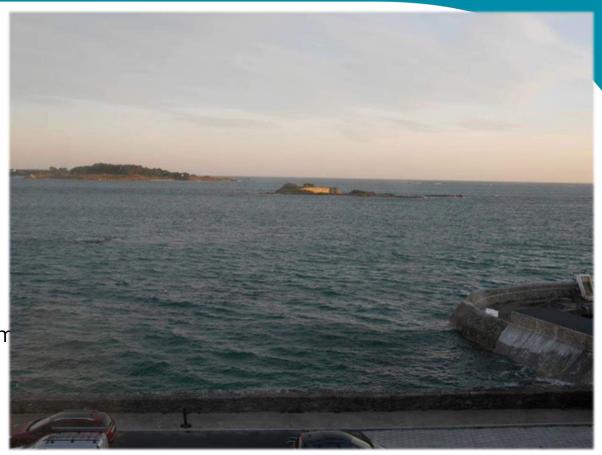
BRITTANY - Olmix seaweed collection sites


Brittany

- 2,730 km of coastline
- 700 species of seaweed
- 7% of worlds diversity : diversity hot spot
- Harvest of biomass from natural populations: \checkmark on beach, in sea, beach cast and aquaculture

75,000 – 80,000 T/year (wet weight) 2nd producer in Europe

BRITTANY - Tides



Tidal heights:

Average worldwide2 mPenmarc'h5.5 mSaint-Malo bay12 mMont-Saint-Michel bay15 mBay of Fundy (Canada)16 m

Strong tidal currents

- Thorough mixing
- Constant nutrient levels
- Less contaminants

Roscoff, tidal range 10 m

Health & Nutrition Poultry Seminar - Dubai - 19th January 2018

for a better life

BRITTANY - Heritage and present uses of seaweeds

18th century Use of algae as

fertilisers

19th century Extraction of iodine from Kelps

20th century Extraction of hydrocolloids from algae

21st century

Extraction of biocompounds for food, feed, plants and biotechs

E 400- E405 Alginate E 406 Agar-agar E 407 Carrageenans E 407a Semitransformed Euchema

- Several research centers specialised in seaweed
- ✓ 60 companies in the marine biotech sector

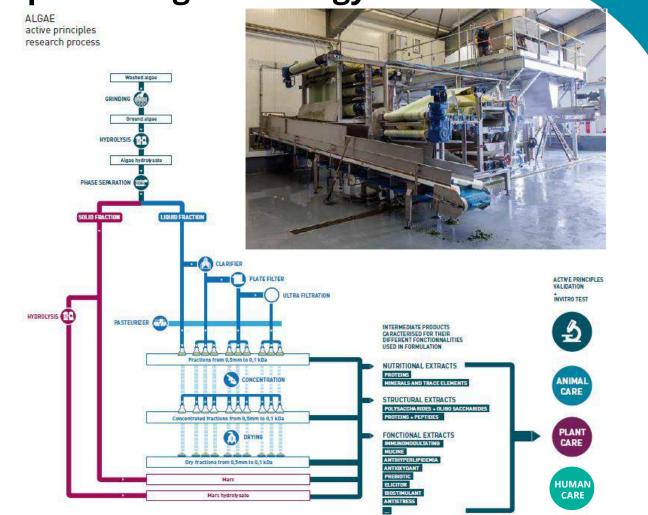
Agenda

- I. OLMIX Vision
- II. ALGAE Introduction
- III. MACROALGAE Innovative molecules
- IV. MACROALGAE in Brittany
- V. OLMIX ALGAE processing technology

VI. Nutrition and health algae based solutions

OLMIX Macroalgae ressources

- ✓ Natural stocks of green and red seaweed
- Non attached seaweed populations harvested fresh
- Annual species
- Low impact on seaweed biodiversity


Ulva armoricana

Olmix - Macroalgae processing technology

OLMIX, expert in algae processing From harvest to final innovative products

UNIQUE & AHEAD ALGAE TECHNOLOGY

Merci esalques!

....

SOLUTIONS NATURELLES

Health & Nutrition Pou

Olmix – Macroalgae processing technology

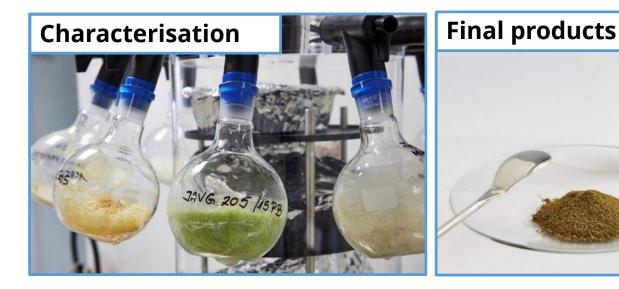
OLMIX, expert in algae processing From harvest to final innovative products

Innovative harvesting material


Olmix – Macroalgae processing technology

OLMIX, expert in algae processing From harvest to final innovative products

Hydrolysis

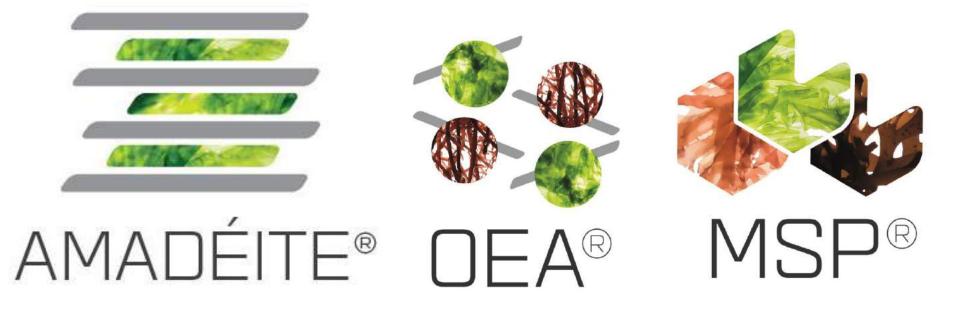


A fully dedicated bioraffinery

Olmix - seaweed processing technology

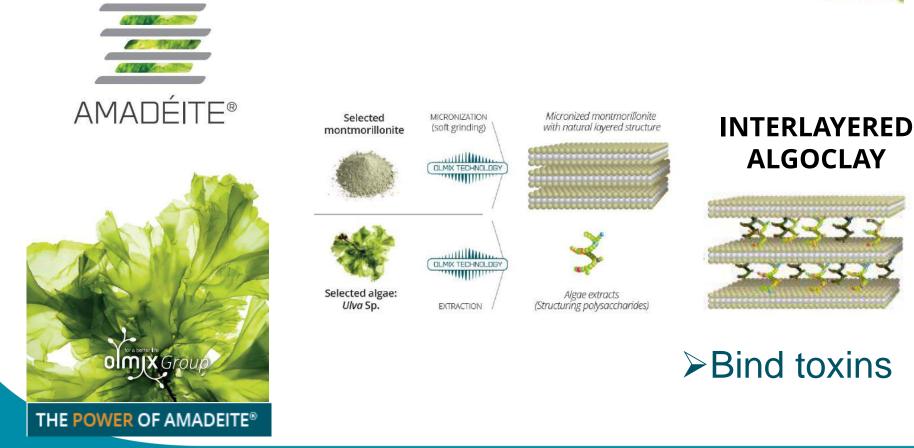
OLMIX, expert in algae processing From harvest to final innovative products

Quality control


Full traceability from collection to final products

Olmix – Macroalgae processing plant

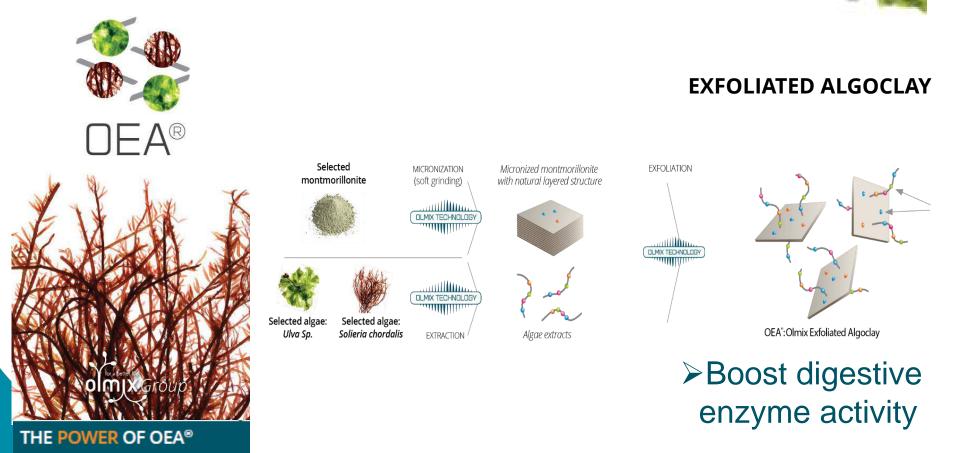
Olmix - seaweed based technologies



Health & Nutrition Poultry Seminar - Dubai - 19th January 2018

UNIQUE & AHEAD ALGAE TECHNOLOGY

OLMIX'S ALGAE TECHNOLOGIES Algae polysaccharides as STRUCTURAL material



Health & Nutrition Poultry Seminar - Dubai - 19th January 2018

PATENTE

OLMIX'S ALGAE TECHNOLOGIES Algae polysaccharides as STRUCTURAL material

Health & Nutrition Poultry Seminar - Dubai - 19th January 2018

PATENTE

PATENTE OLMIX'S ALGAE TECHNOLOGIES Algae polysaccharides with **BIOLOGICAL** properties

Caractérisation

Produits finis

➢ Biological activities Immunity Lipid metabolism Mucin secretion

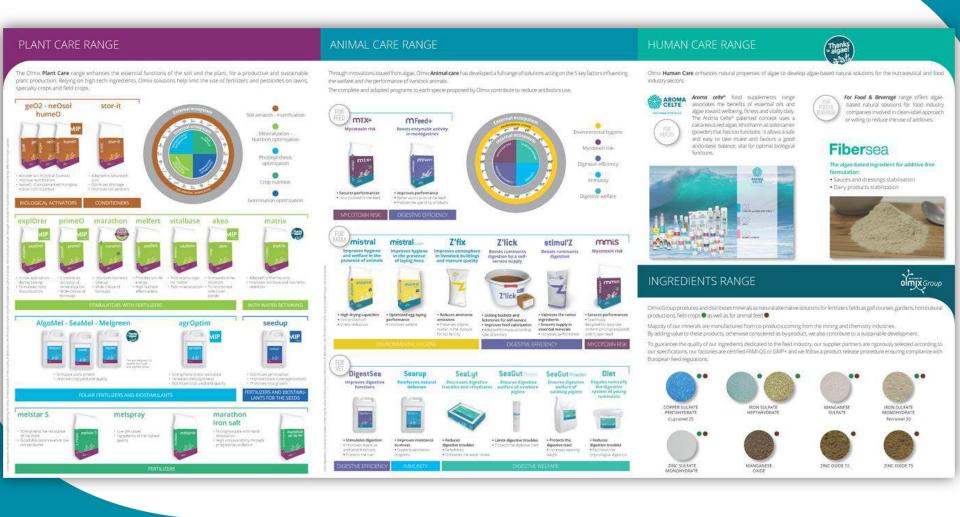
Contrôle qualité

Health & Nutrition Poultry Seminar - Dubai - 19th January 2018

Séparation de phase

Hydrolyse

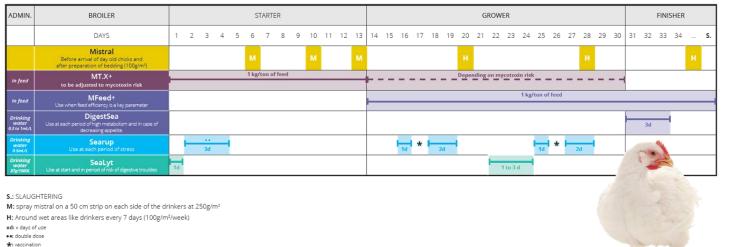
Lavage


Agenda

- I. OLMIX Vision
- II. ALGAE Introduction
- III. MACROALGAE Innovative molecules
- IV. MACROALGAE in Brittany
- V. OLMIX ALGAE processing technology

VI. Nutrition and health algae based solutions

OLMIX group algae based product range



OLMIX animal care Global Programs

Ex : Breizh Algae Chicken

Raised without antibiotic With Olmix Animal care program

Driven by INNOVATION

Transversal R&D

OUR R&D PARTNERS

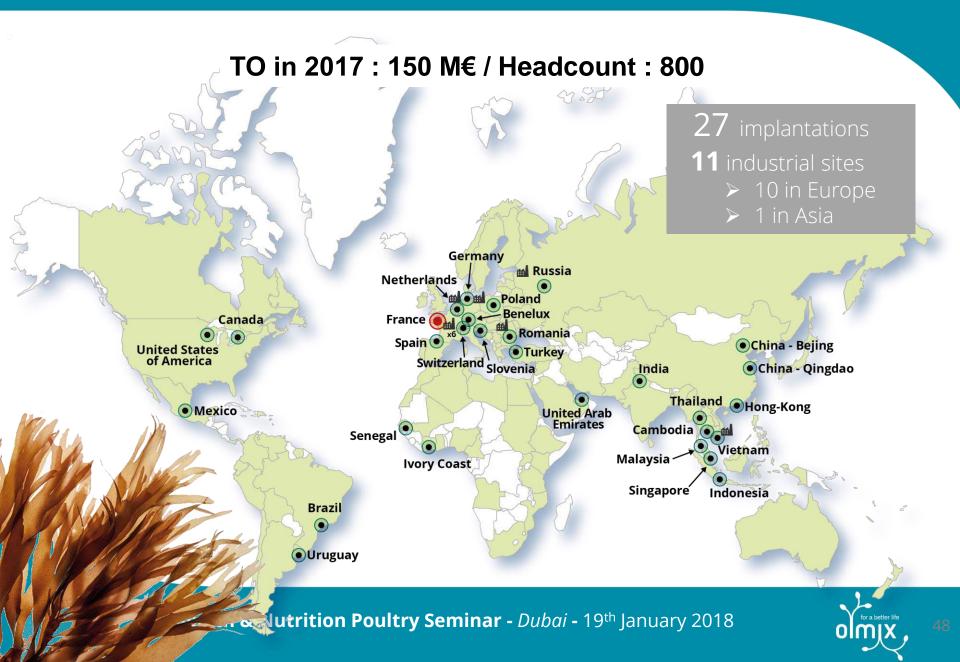
- Innovation for 3 activities
- Objectification of algae properties
- 12% people & 6% turnover
- Dedicated Biotech center & laboratory
- Ideally located in Britanny at the heart of marine research land
- International partnerships
- Ambitious collaborative projects
 - 20 patents (all activities)

Station Biologiqu

Driven by INNOVATION

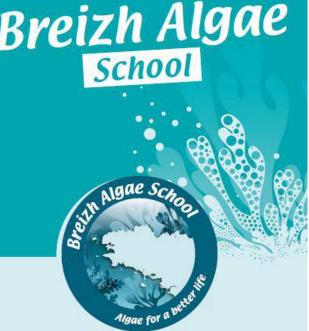
Transversal Process development

- Turn R&D projects to reality
- Cost effective products
- 600 m² pilot plant
- 10 certified plants



- Clay grinding & particle size selection
- Trace elements processing
- Algae bio-refinery Algae cracking
- Algae + clay complexation processes
- Granulation process

WORLDWIDE presence



Driven by INNOVATION

Breizh Algae School : unique !

- What ? Training on :
 - New agriculture challenges
 - Algae to build a healthy food chain
 - In room training combined with practical situations (at school+on the field in Britanny agricultural land)
- From who ? Lecturers : Olmix teams + professional institutes... (IFIP, ISPAIA, INRA...)
- For who ? Students / Partners / Customers

